Identifying and Calculating Driveshaft Vibration Frequencies

Driveshaft Vibration Order: Identifying and Calculating Vibration Frequencies

Learn to better identify where vehicle vibrations come from by calculating their frequencies.

Vibrations are expressed in “first order,” “second order” and so on. The “order” of the vibration is simply how many “bumps” it makes per revolution. Imagine a tire with one bubble in the tread. Every time that tire rotates, one “bump” can be felt as that one bubble slaps the road’s surface. That is a first-order vibration. If there are two bubbles in a tire located in two different places, then two bumps can be felt per each revolution of that tire. That is a second-order vibration. Three bubbles maks a third-order vibration and so on.

It’s important to remember that if a measurement and calculation is made that doesn’t exactly fit any component in the first order, it is necessary to look at vibrations in the second order and so on.

Engines have a preset order to their vibrations. That order is equal to half of the number of cylinders that an engine has. That’s because per every one revolution of an engine, half of its cylinders fire, producing a “bump” per firing. A four-cylinder engine has a second-order vibration; a six-cylinder engine has a third-order vibration, etc.

Classifying the Vibration

During the test drive, the vibration must be classified into whether it is vehicle-speed related or engine-speed related.

To determine if a vibration is vehicle- or engine-speed related, the easiest thing to do is slip the transmission into neutral and let the vehicle coast when the vibration is most noticeable. If the vibration continues, then the vibration is vehicle-speed related. Likewise, if the vibration subsides, the vibration is engine-speed related.

It’s imperative to know whether the vibration is vehicle- or engine-speed related so you know what parts to suspect.

Vibration Measuring Tools

When it comes to vibration measuring tools, you certainly get what you pay for. The cheapest tool is called a sirometer. A sirometer is nothing more than a coil of wire inside of a two-piece plastic housing. Dialing the top half of the sirometer lengthens and shortens the wire. The vibrations make the wire vibrate when the length is set just right for a particular frequency. Then, the user reads a numeric scale on the housing of the sirometer to see where a little pointer stopped at to get the frequency. Although it’s surprisingly accurate, it’s not made for automotive use where someone would be measuring frequencies while driving down the road. It is actually used by small-engine technicians to determine the rpm of lawn mower engines.

The tools of choice are electronic vibration analyzers (which are what you will see used in this article). The simplest versions provide Hz, rpm (Hz times 60) and amplitude. The most sophisticated of these tools go so far as to actually name the suspect part(s). When using the simpler versions of a vibration analyzer, it is also wise to use a special vibration analysis software on your PC that performs the calculations for you and points directly to the suspect part(s).

With any vibration measuring tool, always make your measurements under the conditions when the vibration is most noticeable. Then, note the vehicle speed and engine rpm that correspond with the exact moment the vibration frequency is recorded. For best results, make the measurements in places on the vehicle where the vibration can be felt best, like the seat tracks, steering column and floor pan. Taking measurements directly on the source of the vibration can result in inaccurate readings.

Calculating Natural Frequencies

A vibration analyzer provides a frequency and amplitude of the component that is vibrating. Everything has a preset frequency that it emits when it vibrates. The frequency measured is a fingerprint of the component that is causing the problem.

Let’s start with the tires. To calculate a tire’s frequency from scratch, first calculate its diameter. This can be done with a size chart. For example, a 255/70R16 has a diameter of 30 in.

To find the rpm of the tire, you then need to calculate the circumference (try using an online tire size calculator or use π x diameter). This will give a circumference of 94.4 in. Then divide the 63,360 (inches in a mile) by 94.4 in. The revolutions per mile is 692. Now we can determine the frequency, or revolutions per second, by dividing by 60 for an answer of 11.5 Hz. When using this formula, it will provide a Hz reading for the vibrating tire at around 60 mph.

The tire given here will produce a first order vibration with a 11 Hz to 12 Hz reading if it were the source of the highway speed vibration. If there are two bubbles on the tire, then it will produce a second-order vibration reading between 22 Hz and 24 Hz.

Now that we have the tire frequency, we can calculate the driveshaft vibration for a rear wheel drive vehicle. First, obtain the rear axle ratio. Multiply the ratio by the first-order tire frequency. The ratio will be 1:3.08. So, 3.08 x 11.5 Hz gives us 35.42 Hz. Therefore, at highway speed, an out-of-balance driveshaft on this vehicle will produce a reading between 35 Hz and 36 Hz at about 60 mph. If the driveshaft were bent in a way that produced a second-order vibration, it would read between 70 Hz and 72 Hz. Remember though, this is for RWD driveshafts and not FWD half shafts. 

A simple imbalance condition will always produce only a first-order vibration. In order to have a second order or more vibration, something has to be bent or spinning off center.

The Real World

Computer balancer photo 1
Photo 1
vibration issues photo 2
Photo 2






Alright, let’s see what happens when classroom theory meets the real world. Let’s start simple and work our way up.

The first vehicle is a 2003 Ford Taurus. It has P215/60R16 tires. At 60 mph, a vibration can be felt. The vibration is vehicle-speed related. It is felt in the seat and the steering wheel. The old “buttometer” says it is a common tire balance problem. The EVA shows 12 Hz and 0.03 G at the vehicle speed of 60 mph (vehicle speed tracked on a scan tool).

The calculated frequency of these tires, and everything spinning at that same speed as the tires, is 13 Hz. The rotors, tires, hubs and the half shafts are suspected. One of the tires was found to be 5 oz. out of balance (see Photo 1).

The balance fixed the problem, but what if it didn’t? What if the tires were in perfect balance and not out of round? Then at least we would know for sure that we are looking for something that can create a 12 Hz first-order vibration at 60 mph. We also know for sure that it has to be something that is turning at the same speed as the tires since those items are the only thing turning that slow. This helps narrow our search.

What if we measured 36 Hz? What could make a 36 Hz vehicle-speed related vibration that might be similar to tires? Thirty-six Hz doesn’t match anything in the first order or the second order for that car, but it does match the tripod joint on a CV axle when looked at in the third order. The next vehicle is a 2001 Silverado 2×4. This truck has a vibration around 40 mph and 1,500 rpm that is hardly noticeable but is there. The vibration analyzer has picked up a vibration of 36 Hz measured at the center console.

Figure 1
Figure 1

The rear differential ratio is 1:3.73 and the tires are 255/70R16. What you need to calculate the source of the vibration can be found earlier in this article. However, let’s try some special software that does the calculations for us. After plugging the rear differential specs into the software and the engine rpm at which it occurred, we get an answer of first-order driveshaft vibration (see Figure 1). The vibration is labeled as a first-order propeller shaft vibration. And what do you know, the software and manual calculations are correct.

Hose clamps were added to the driveshaft to generate this vibration (see Photo 2).

Glen Beanard is an expert at advising on the relationship between mechanical and electronic control systems with Independent Energy. He is also a trained automotive diagnostic technician of 25 years and serves as an automotive technical instructor.

You May Also Like

Step by Step: How to Properly Change an EV Tire

Tire changing is a straightforward procedure for most technicians, but the transition from ICE vehicles to EVs will introduce some changes.

EV on Lift

As electric vehicles (EVs) rapidly transform the automotive landscape, routine tasks like tire changes will take on new complexity, requiring updated equipment and increased technician training. Tire changing is a straightforward procedure for most technicians, but the transition from ICE vehicles to EVs will introduce some changes, particularly when it comes to addressing the added weight of EVs.

Mounting & Demounting a Tire the Correct Way

In both rim clamp and pedestal tire changers, specific techniques are followed to ensure correct dismounting and mounting of tires.

Why Updating Your TPMS Tools Regularly Matters

To maintain the accuracy and reliability of newly programmed TPMS sensors, it’s important to keep your TPMS programming tool up to date.

TPMS Stock
Check TPMS, Save on Fuel for Your Next Road Trip

Discover the benefits of TPMS for enhancing safety, fuel efficiency and peace of mind during long road trips.

Troubleshooting Porsche TPMS

Tips for diagnosing Porsche TPMS systems and performing relearns.

Porsche TPMS

Other Posts

Tire Mounted Sensors: The Future of Intelligent Tire Sensing

Tire-mounted sensors offer expanded capabilities for TPMS technology advancement.

Four Must-Knows for TPMS Service

Above all else, follow these four important steps for effective TPMS service.

Fine-Tuning Your Wheel Balancing Process

The first step to a smooth ride and well-balanced tire has nothing to do with the balancer.

Wheel balancing
Check These Things When a Vehicle Comes in for TPMS Service

By performing these checks, you can avoid any misunderstandings that can lead to less than premium service.

TPMS Tire Life