Servicing Variable-Assist Power Steering Systems

Servicing Variable-Assist Power Steering Systems

Power Steering_1Variable-assist, variable-rate or variable-effort power steering is used on a growing number of vehicles. Variable assist is a way of providing the best of both worlds: finger-tip parking maneuverability at low speed, and reduced assist at higher speeds for greater stability and road feel.

As a vehicle’s speed increases, less effort and assist are needed to steer the wheels. Variable-rate steering, by comparison, applies more assist at low speed when it is needed most and reduces assist at higher speeds when it is needed least.

Diagnosis

Power Steering_2Problems with electronic variable-assist systems include all of the same things that can go wrong with a conventional power steering system (leaks, center wear in the steering gears, pump and hose failures, etc.), plus problems with the control electronics including the vehicle speed sensor circuit, the solenoid valve and control module. Accurate diagnosis, therefore, is essential to minimize returns and/or comebacks. Most of these systems provide diagnostic fault codes that can be accessed with a voltmeter, test light or scan tool to pinpoint the nature of the fault (if the fault is electronic rather than mechanical or hydraulic).

If power to the solenoid or control-valve actuator is lost, the valve keeps the bypass circuit closed so full power assist is provided under all driving conditions. The only indication of trouble, therefore, might be a loss of road feel and/or increased steering sensitivity at highway speeds.

It’s important to remember that variable-rate power steering only reduces the amount of pressure that reaches the steering gear at higher road speeds. The only way it could reduce power assist at low speed would be in the unlikely event the actuator or solenoid valve failed in the open position. This could cause a noticeable reduction or loss of power assist.Power Steering_3

If the control solenoid fails on a Ford EVO system, or the control circuit for the solenoid is lost, the valve is designed to keep the bypass circuit closed so full power ­ assist is provided under all driving conditions. The only indication of trouble would be a loss of road feel and/or increased steering sensitivity at highway speeds. However, if the EVO solenoid valve jams in the open position, there would be little or no power assist at any speed.

On GM’s Magnasteer racks, loss of current to the magnetic coils would cause a loss of power assist at low speed. Coil resistance can be checked with an ohmmeter, and should read about two ohms. An infinite (open) reading indicates a bad coil (requires replacing the rack since the coils are not serviceable). Checking for shorts between both sides of the coil assembly and rack housing is also recommended.

Power Steering_4The system does have self-diagnostic capability, but there is only one fault code: C1241 (Magna­steer circuit malfunction). The code is set if the module detects an open or a short in the coil circuit. If this code is present, the Magnasteer system is disabled and will not vary the steering effort as vehicle speed changes. The C1241 body code can be read with a Tech 2 or equivalent scan tool. The Tech 2 tool can also be used to perform a Magnasteer function test. The test varies the current to the coil so you can check for a change in steering effort when turning the steering wheel.

Replacement racks for variable-assist power steering applications are available with or without an EVO control solenoid. As long as the original EVO control solenoid is working OK, it can be removed and installed on the replacement rack to save your customer a few bucks. There’s no need to replace the whole rack if only the EVO solenoid valve is defective.

On GM Magnasteer applications, the whole rack must be replaced if the rack or control unit is defective because the Magnasteer unit is part of the rack. Handle with care because the permanent magnets inside the Magnasteer valve assembly and connector are fragile and can be easily damaged.

You May Also Like

Step by Step: How to Properly Change an EV Tire

Tire changing is a straightforward procedure for most technicians, but the transition from ICE vehicles to EVs will introduce some changes.

EV on Lift

As electric vehicles (EVs) rapidly transform the automotive landscape, routine tasks like tire changes will take on new complexity, requiring updated equipment and increased technician training. Tire changing is a straightforward procedure for most technicians, but the transition from ICE vehicles to EVs will introduce some changes, particularly when it comes to addressing the added weight of EVs.

Mounting & Demounting a Tire the Correct Way

In both rim clamp and pedestal tire changers, specific techniques are followed to ensure correct dismounting and mounting of tires.

Reverse-wheel-adapter
Why Updating Your TPMS Tools Regularly Matters

To maintain the accuracy and reliability of newly programmed TPMS sensors, it’s important to keep your TPMS programming tool up to date.

TPMS Stock
Check TPMS, Save on Fuel for Your Next Road Trip

Discover the benefits of TPMS for enhancing safety, fuel efficiency and peace of mind during long road trips.

TPMS-relearn
Troubleshooting Porsche TPMS

Tips for diagnosing Porsche TPMS systems and performing relearns.

Porsche TPMS

Other Posts

Tire Mounted Sensors: The Future of Intelligent Tire Sensing

Tire-mounted sensors offer expanded capabilities for TPMS technology advancement.

Tire-Mounted-Sensor
Four Must-Knows for TPMS Service

Above all else, follow these four important steps for effective TPMS service.

TPMS-must-knows
Fine-Tuning Your Wheel Balancing Process

The first step to a smooth ride and well-balanced tire has nothing to do with the balancer.

Wheel balancing
Check These Things When a Vehicle Comes in for TPMS Service

By performing these checks, you can avoid any misunderstandings that can lead to less than premium service.

TPMS Tire Life